The Diophantine equation xn= Dy2+1

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE DIOPHANTINE EQUATION xn − 1 x −

We prove that if (x, y, n, q) 6= (18, 7, 3, 3) is a solution of the Diophantine equation (xn−1)/(x−1) = y with q prime, then there exists a prime number p such that p divides x and q divides p − 1. This allows us to solve completely this Diophantine equation for infinitely many values of x. The proofs require several different methods in diophantine approximation together with some heavy comput...

متن کامل

ON BOUNDEDNESS OF THE SOLUTIONS OF THE DIFFERENCE EQUATION xn+1=xn-1/(p+xn)

Theorem 1. (i) If p > 1, then the unique equilibrium 0 of (1) is globally asymptotically stable. (ii) If p = 1, then every positive solution of (1) converges to a period-two solution. (iii) If 0 < p < 1, then 0 and x = 1− p are the only equilibrium points of (1), and every positive solution {xn}n=−1 of (1) with (xN − x)(xN+1 − x) < 0 for some N ≥ −1 is unbounded. They proposed the following ope...

متن کامل

On the Max-Type Difference Equation xn+1=max{A/xn,xn-3}

The study of max-type difference equations attracted recently a considerable attention, see, for example, 1–27 , and the references listed therein. This type of difference equations stems from, for example, certain models in automatic control theory see 28 . In the beginning of the study of these equations experts have been focused on the investigation of the behavior of some particular cases o...

متن کامل

On the Diophantine Equation

= c for some integers a, b, c with ab 6= 0, has only finitely many integer solutions. Stoll & Tichy proved more generally that if a, b, c ∈ Q and ab 6= 0, then for m > n ≥ 3, the above equation has only finitely many integral solutions x, y. Independently, Rakaczki established a more precise finiteness result on this binomial equation and extended this result to more general equations (see Acta...

متن کامل

On the Diophantine Equation

If a, b and n are positive integers with b ≥ a and n ≥ 3, then the equation of the title possesses at most one solution in positive integers x and y, with the possible exceptions of (a, b, n) satisfying b = a + 1, 2 ≤ a ≤ min{0.3n, 83} and 17 ≤ n ≤ 347. The proof of this result relies on a variety of diophantine approximation techniques including those of rational approximation to hypergeometri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2003

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa106-1-5